Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Year range
1.
arxiv; 2023.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2303.08101v1

ABSTRACT

Some of the important critical parameters for assessing the water quality like pH (Hydrogen ion concentration), DO (Dissolved Oxygen), BOD (Biological Oxygen Demand), etc., were monitored at different locations in some major Indian rivers. The results obtained from the study reveals that the critical parameters had increasing values in some monitoring locations, decreasing values, and no variation in values at some other places. It is recommended to have a pH value above 7, higher values of DO, lower values of BOD & FCC (Faecal Coliform Content) for improved water quality. Overall, the water quality improved in most Indian rivers. There was no discharge of industrial wastes, hotels/restaurants wastes, immersing of idols during religious festivals, etc., to the rivers during the COVID-19 lockdown. Therefore, enforcement of strict regulations by the Government of India for disposal of wastes produced from industrial & domestic activities can significantly reduce the water pollution levels in the Indian rivers.


Subject(s)
COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.04.28.489772

ABSTRACT

The Omicron subvariant BA.2 has become the dominant circulating strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in many countries. We have characterized structural, functional and antigenic properties of the full-length BA.2 spike (S) protein and compared replication of the authentic virus in cell culture and animal model with previously prevalent variants. BA.2 S can fuse membranes more efficiently than Omicron BA.1, mainly due to lack of a BA.1-specific mutation that may retard the receptor engagement, but still less efficiently than other variants. Both BA.1 and BA.2 viruses replicated substantially faster in animal lung than the parental strain in the absence of pre-existing immunity, possibly explaining the heightened transmissibility despite their functionally compromised spikes. As in BA.1, mutations in the BA.2 S remodel its antigenic surfaces leading to strong resistance to neutralizing antibodies. These results suggest that both immune evasion and replicative advantage may contribute to the heightened transmissibility for the Omicron subvariants.


Subject(s)
Coronavirus Infections
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.11.475922

ABSTRACT

The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), bearing an unusually high number of mutations, has become a dominant strain in many countries within several weeks. We report here structural, functional and antigenic properties of its full-length spike (S) protein with a native sequence in comparison with those of previously prevalent variants. Omicron S requires a substantially higher level of host receptor ACE2 for efficient membrane fusion than other variants, possibly explaining its unexpected cellular tropism. Mutations not only remodel the antigenic structure of the N-terminal domain of the S protein, but also alter the surface of the receptor-binding domain in a way not seen in other variants, consistent with its remarkable resistance to neutralizing antibodies. These results suggest that Omicron S has acquired an extraordinary ability to evade host immunity by excessive mutations, which also compromise its fusogenic capability.


Subject(s)
Coronavirus Infections
4.
Cogn Res Princ Implic ; 6(1): 75, 2021 11 21.
Article in English | MEDLINE | ID: covidwho-1528699

ABSTRACT

Facial masks have become and may remain ubiquitous. Though important for preventing infection, they may also serve as a reminder of the risks of disease. Thus, they may either act as cues for threat, priming avoidance-related behavior, or as cues for a safe interaction, priming social approach. To distinguish between these possibilities, we assessed implicit and explicit evaluations of masked individuals as well as avoidance bias toward relatively unsafe interactions with unmasked individuals in an approach-avoidance task in an online study. We further assessed Covid19 anxiety and specific attitudes toward mask-wearing, including mask effectiveness and desirability, hindrance of communication from masks, aesthetic appeal of masks, and mask-related worrying. Across one sample of younger (18-35 years, N = 147) and one of older adults (60+ years, N = 150), we found neither an average approach nor avoidance bias toward mask-wearing compared to unmasked individuals in the indirect behavior measurement task. However, across the combined sample, self-reported mask-related worrying correlated with reduced avoidance tendencies toward unmasked individuals when Covid19 anxiety was low, but not when it was high. This relationship was specific to avoidance tendencies and was not observed in respect to explicit or implicit preference for mask-wearing individuals. We conclude that unsafe interaction styles may be reduced by targeting mask-related worrying with public interventions, in particular for populations that otherwise have low generalized Covid19 anxiety.


Subject(s)
COVID-19 , Aged , Anxiety , Anxiety Disorders , Humans , SARS-CoV-2 , Self Report
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.17.456689

ABSTRACT

The Delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has outcompeted previously prevalent variants and become a dominant strain worldwide. We report here structure, function and antigenicity of its full-length spike (S) trimer in comparison with those of other variants, including Gamma, Kappa, and previously characterized Alpha and Beta. Delta S can fuse membranes more efficiently at low levels of cellular receptor ACE2 and its pseudotyped viruses infect target cells substantially faster than all other variants tested, possibly accounting for its heightened transmissibility. Mutations of each variant rearrange the antigenic surface of the N-terminal domain of the S protein in a unique way, but only cause local changes in the receptor-binding domain, consistent with greater resistance particular to neutralizing antibodies. These results advance our molecular understanding of distinct properties of these viruses and may guide intervention strategies.


Subject(s)
Coronavirus Infections
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.13.439709

ABSTRACT

Several fast-spreading variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have become the dominant circulating strains that continue to fuel the COVID-19 pandemic despite intensive vaccination efforts throughout the world. We report here cryo-EM structures of the full-length spike (S) trimers of the B.1.1.7 and B.1.351 variants, as well as their biochemical and antigenic properties. Mutations in the B.1.1.7 protein increase the accessibility of its receptor binding domain and also the binding affinity for receptor angiotensin-converting enzyme 2 (ACE2). The enhanced receptor engagement can account for the increased transmissibility and risk of mortality as the variant may begin to infect efficiently infect additional cell types expressing low levels of ACE2. The B.1.351 variant has evolved to reshape antigenic surfaces of the major neutralizing sites on the S protein, rendering complete resistance to some potent neutralizing antibodies. These findings provide structural details on how the wide spread of SARS-CoV-2 enables rapid evolution to enhance viral fitness and immune evasion. They may guide intervention strategies to control the pandemic.


Subject(s)
Coronavirus Infections , Infections , COVID-19 , Seizures
SELECTION OF CITATIONS
SEARCH DETAIL